Imidazolium Magnetic Ionic Liquid Solubilities in Water

Ward Toler
16 April 2018
University of Mississippi
Department of Chemical Engineering
Outline

• Introduction to MILs
• Application of MILs
• Basics of Water Solubility
• Water Solubility Measurement
• Data and Results
Introduction to Ionic Liquids

• Room temperature salts
• Properties:
 - negligible vapor pressure
 - high thermal and chemical stability
 - tunable by selection of cation or anion
• Uses:
 - reaction solvent and catalyst
 - separation agent, water treatment
Magnetic Ionic Liquids (MILs)

- IL with metal ion incorporated into structure
- Liquids become paramagnetic
- First reported by Hayashi et al. in 2004

MILs in Separations

Ionic Liquid Water Solubility

- Break attractions \rightarrow form cavity \rightarrow insert solute into cavity
- $\Delta G = RT \ln(x\gamma)$
- $\gamma = f(\text{size, shape, polarity})$
- At equilibrium, $\Delta G = 0$
- $\log(C^*) = a(V_{ix}) + b$

Rmim[FeCl₄] Synthesis

• Equimolar amount of Rmim[Cl] and FeCl₃*6H₂O
• Stirred at room temperature until two phase mixture fully develops
• Organic phase separated and purified
Shake Flask Method

• 1 mL of water, 1 mL of MIL
• Shake vigorously for 2 min
• Equilibrate for 24 h using mechanical shaker at 100 rpm
• Centrifuge for 2 min at 500 rpm to induce phase separation
• Remove aliquot of water for testing
Rmim[FeCl₄]
Linear Free Energy Relationship

Averaged C*: 1.52 M
Micelle Formation

- Micellar behavior for [C(n)mim][FeCl₄], n > 6
- Brown et al. reported a CMC of 40.6 mmol/L for [C(10)mim][FeCl₄]
CMC Measurement via Tensiometer
Next Steps

• Synthesize MILs with other metals (Mn)
• Synthesize and test more water-immiscible MILs
• Test extraction efficiency of organic compounds under influence of magnetic field
Imidazolium Magnetic Ionic Liquid Solubilities in Water

Ward Toler
16 April 2018
University of Mississippi
Department of Chemical Engineering
Bibliography

Results Comparison

<table>
<thead>
<tr>
<th>MIL</th>
<th>Ciw (M) TOC</th>
<th>Ciw (M) TN</th>
<th>Ciw (M) UV-Vis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)mim[FeCl<sub>4</sub>]</td>
<td>1.52 ± 0.02</td>
<td>1.65 ± 0.04</td>
<td>1.40 ± 0.01</td>
</tr>
<tr>
<td>C(4)mim[FeCl<sub>4</sub>]</td>
<td>1.08 ± 0.04</td>
<td>1.19 ± 0.03</td>
<td>1.10 ± 0.03</td>
</tr>
<tr>
<td>C(6)mim[FeCl<sub>4</sub>]</td>
<td>0.89 ± 0.03</td>
<td>0.93 ± 0.04</td>
<td>0.91 ± 0.04</td>
</tr>
<tr>
<td>C(8)mim[FeCl<sub>4</sub>]</td>
<td>0.92 ± 0.02</td>
<td>0.96 ± 0.05</td>
<td>0.90 ± 0.03</td>
</tr>
<tr>
<td>C(10)mim[FeCl<sub>4</sub>]</td>
<td>0.98 ± 0.02</td>
<td>1.02 ± 0.04</td>
<td>0.92 ± 0.07</td>
</tr>
</tbody>
</table>